

Zeolites

Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst AI-SSZ-70

Zachariah J. Berkson, Ming-Feng Hsieh, Stef Smeets, David Gajan, Alicia Lund, Anne Lesage, Dan Xie, Stacey I. Zones, Lynne B. McCusker, Christian Baerlocher, and Bradley F. Chmelka*

Abstract: The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid-state NMR and synchrotron X-ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al-SSZ-70. Through-covalent-bond 2D²⁷Alf²⁹Si} J-correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94% of the Al atoms are located at the surfaces of the large-pore interlayer channels of Al-SSZ-70, while only 6% are in the sub-nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ-70.

Nanoporous zeolites are of considerable technological interest because of their high surface areas, well-defined sub-nanometer pore dimensions, and exchangeable cations.^[1]

[*]	Dr. Z. J. Berkson, Dr. MF. Hsieh, Dr. L. B. McCusker, Dr. C. Baerlocher, Prof. Dr. B. F. Chmelka Department of Chemical Engineering University of California Santa Barbara, CA 93106 (USA) E-mail: bradc@engineering.ucsb.edu Dr. S. Smeets, Dr. L. B. McCusker, Dr. C. Baerlocher Laboratory of Crystallography, ETH Zurich Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland)
	Dr. D. Gajan, Dr. A. Lund, Dr. A. Lesage Institut des Sciences Analytiques UMR 5280 (CNRS/Université Lyon 1/ENS Lyon), Université Lyon, Centre de RMN à Très Hauts Champs 69100 Villeurbanne (France)
	Dr. D. Xie, Dr. S. I. Zones Chevron Energy Technology Company Richmond, CA 94802 (USA)
	Dr. MF. Hsieh Present address: Johnson Matthey Technology Centre Chilton P.O. Box 1, Belasis Avenue, Billingham TS23 1LB (UK)
	Dr. S. Smeets Present address: Kavli Institute of Nanoscience, Delft University of Technology Van der Maasweg 9, 2629 HZ Delft (The Netherlands)
D	Supporting information (experimental details, 2D ²⁷ Al MQMAS analyses, 1D ²⁷ Al and ²⁹ Si NMR spectra, NMR sensitivity enhancement under low-temperature conditions, additional discussion) and the ORCID identification number(s) for the author(s) of this article can be found under:

https://doi.org/10.1002/anie.201813533.

Their molecular adsorption or reaction sites enable important industrial applications, including air-gas separations^[2] and heterogeneous catalysis of reactions such as hydrocarbon $\ensuremath{\mathsf{conversions}}^{[3]}$ and reduction of nitric oxides for automotive pollution mitigation.^[4] Aluminosilicate zeolites are composed of corner-sharing SiO₄ and AlO₄ tetrahedra, where the AlO₄ tetrahedra are associated with catalytically active sites when the excess negative framework charges are balanced by acidic countercations, such as H⁺. The molecular diffusion, adsorption, and reaction properties of zeolite catalysts are strongly influenced by the nanopore dimensions, the framework architectures, and the types and distributions of heteroatom sites (e.g. Al) and the associated cations. Understanding and controlling heteroatom locations in zeolite catalysts have been severely limited by the non-stoichiometric substitution of heteroatoms into the framework and their distributions, which are challenging to characterize. Determining such distributions in different zeolite frameworks and correlating their macroscopic adsorption and/or catalytic reaction properties has been a long-standing challenge in the understanding of zeolite catalysts.

Heteroatom distributions in zeolites have long been recognized to depend strongly on synthesis conditions, including the compositions of the precursor materials and organic and inorganic structure-directing cations.^[5] Information on heteroatom distributions in zeolites has been accessed previously by using several scattering or spectroscopic techniques. For example, the relative positions and proximities of Al atoms and their associated cations may be identified by deconvolution of infrared or ultraviolet-visible spectra of zeolite frameworks,^[6-8] though such spectra are generally poorly resolved. While the similar electron densities of Al and Si atoms make them challenging to distinguish using scattering techniques,^[9] Al occupancies in different tetrahedral (T) sites have been determined for large single crystals by synchrotron X-ray standing-wave diffraction.^[10] For as-synthesized zeolites containing organic structure-directing agents (OSDAs) that drive preferential configurations of heteroatom sites, information on framework heteroatom distributions may be extracted by the refinement of synchrotron Xray diffraction data.^[11-13] Heteroatom distributions in zeolites can be influenced in favorable cases by the substitution of Al for $B^{\left[14\right] }$ or the careful selection of OSDAs and synthesis conditions.^[11,15–17]

Herein, analyses of solid-state two-dimensional (2D) NMR spectra with complementary synchrotron X-ray powder diffraction analyses establish the preferential siting of Al heteroatoms in calcined zeolite Al-SSZ-70. The layered zeolite SSZ-70 has recently emerged as a promising platform

Angew. Chem. Int. Ed. 2019, 58, 6255-6259

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

for new catalysts because it can be exfoliated to generate high-surface-area active materials that exhibit enhanced catalysis rates for alkylation reactions,^[18] while calcined Al-SSZ-70 exhibits high catalytic activity for hydrocarbon cracking.^[19] The structure of calcined SSZ-70 has 14 crystallographically distinct T sites.^[20] SSZ-70 crystallizes into hexagonal flakes (Figure 1 a) and has two types of 2-dimensional

Figure 1. a) SEM image of Al-SSZ-70. b) Interlayer structure of calcined SSZ-70, showing the two types of interlayer -OH species (red; (c,d)). e) Synchrotron XRPD patterns of calcined Si- (black) and Al-SSZ-70 (green).

channel systems with effective cross-sectional pore openings of $4.4 \times 5.9 \text{ Å}^2$ (within the **MWW**-type layers) and $4.0 \times$ 11.5 Å² (between the MWW-type layers). However, in contrast to other MWW-type zeolite catalysts, the catalytic selectivity of calcined Al-SSZ-70 for hydrocarbon cracking does not change substantially with time on stream,^[19] characteristic of reactions occurring in a single type of nanochannel system.^[21] Calcined SSZ-70 exhibits two types of silanol species that protrude into the interlayer channels (Figure 1b): "nests" of three closely spaced silanols (Figure 1 c) and isolated silanols (Figure 1 d). The different T sites in SSZ-70 differ with respect to their covalent bonding configurations and positions relative to the inter- and intralayer channel surfaces. For example, T1a,b, T2a,b, and T3 are at the surfaces of the interlayer channels, while T5a,b, T6, T7a,b, and T8a,b are at the surfaces of the intralayer channels. Al heteroatoms located in such different T sites are expected to exhibit distinct adsorption and reaction properties. The synchrotron X-ray powder diffraction (XRPD) patterns of calcined Si- and Al-SSZ-70 are virtually identical (Figure 1e), indicating that the long-range ordering of T-atoms in SSZ-70 is indistinguishable in silicate and aluminosilicate forms, despite their different compositions.

Analyses of the 1D ²⁹Si MAS NMR spectra (Figure S1 in the Supporting Information) show that the local environments of framework ²⁹Si atoms in calcined SSZ-70 are almost identical in the siliceous and aluminosilicate forms. Because of the small absolute quantity of Al in the material (Si/Al = 25, Ref. [19]) and overlapping ²⁹Si NMR signals from different $Q^4(0Al)$ and $Q^3(0Al)$ species in SSZ-70,^[20] the ²⁹Si signals from $Q^4(1Al)$ species cannot be resolved or quantified from the 1D ²⁹Si MAS NMR spectra alone. (The $Q^m(nAl)$ notation refers to a tetrahedrally coordinated ²⁹Si atom that is covalently linked through bridging O atoms to *m* other Si or Al atoms, of which *n* are Al.)

Solid-state ²⁷Al NMR spectroscopy is sensitive to the local environments of the crucial Al heteroatoms in zeolite frameworks and is in principle capable of distinguishing between ²⁷Al species in different T sites in aluminosilicate zeolites.^[22] However, the resolution of such spectra is often limited owing to strong quadrupolar interactions of ²⁷Al (I = 5/2) nuclei, as well as inhomogeneous distributions of ²⁷Al species. The resolution of solid-state ²⁷Al NMR spectra can be improved by using high magnetic fields (>18 Tesla) and 2D NMR techniques.^[23] For example, high-field ²⁷Al multiple-quantum magic-angle-spinning (MQMAS) NMR analyses of different samples of aluminosilicate zeolite ZSM-5, which has 24 crystallographically distinct T sites, have led to the identification and assignment of at least 12 different ²⁷Al signals associated with different T sites.^[24-26] In addition, recent 2D ²⁷Al{²⁹Si} dipolar-mediated NMR analyses of ZSM-5 provided evidence of Al incorporation into 4 of the 24 T sites,^[27] although through-space dipolar interactions can manifest signal intensities from next-nearest neighbor T sites and non-covalently bonded moieties that reduce resolution. General methods for determining the distributions and relative populations of Al heteroatoms in zeolites have been elusive, particularly for materials of high catalytic importance that often exhibit exceptional structural complexity, such as Al-SSZ-70.

Herein, we report the preferential siting of Al heteroatoms in 5 of the 14 T sites in calcined Al-SSZ-70 established by analyses of solid-state 2D NMR heteronuclear correlation spectra,^[27,28] which resolve distinct signals from different framework ²⁷Al moieties and provide direct evidence for the incorporation of Al atoms into specific sites. The 1D and 2D ²⁷Al MAS NMR spectra of calcined Al-SSZ-70 in Figure 2 show well-resolved ²⁷Al signals at 60 ppm, 55 ppm, and 49 ppm from ²⁷Al atoms in tetrahedrally coordinated environments, as well as a signal at -5 ppm from octahedrally coordinated ²⁷Al species. The relatively narrow (2–3 ppm fullwidth half-maximum, fwhm) ²⁷Al signals suggest that the ²⁷Al heteroatoms are sited in specific T sites, rather than being randomly distributed.

Specific locations of Al heteroatoms in calcined Al-SSZ-70 are determined by identification of the nearest-neighbor ²⁹Si sites to which the different ²⁷Al species are covalently bonded. This is achieved by measuring 2D ²⁷Al{²⁹Si} heteronuclear multiple quantum correlation (HMQC) NMR spectra,^[29-31] which here correlate the shifts of ²⁷Al-O-²⁹Si spin

Figure 2. Solid-state 2D a) ²⁷Al{²⁹Si} *J*-HMQC and b) ²⁷Al{¹H} HETCOR NMR spectra of calcined Al-SSZ-70 acquired at 18.8 Tesla, 10 kHz MAS, and 97 K. Solid-state 1D ²⁷Al echo and ²⁹Si{¹H} CPMAS spectra acquired under the same conditions are shown along the corresponding axes for comparison with the 1D projections of the 2D spectra. The accompanying insets show the *J*-coupling between ²⁷Al atoms (orange) and ²⁹Si atoms (gray) at nearest-neighbor T sites consistent with the correlated intensities in the 2D spectra in (a) and (b). c) Schematic diagram of the framework structure of Al-SSZ-70, with orange indicating the T sites that are occupied by Al heteroatoms as determined by the solid-state NMR analyses.

pairs and are mediated by through-covalent-bond J_{Al-Si} couplings.^[32] Acquisition of such spectra has been exceptionally challenging in the past, but is enabled here by the use of low-temperature (<100 K) measurement conditions, which Angewandte International Edition Chemie

lead to improved NMR signal sensitivity (ca. $5 \times$ increase) (Figure S2, S3). For example, the 2D ²⁷Al{²⁹Si} J-HMQC spectrum of calcined Al-SSZ-70 in Figure 2a shows correlated signal intensities at ²⁷Al shifts of 60 ppm, 55 ppm, and 49 ppm that are correlated with ²⁹Si signals in the chemical shift range -105 ppm to -108 ppm (red band in Figure 2a) from different $Q^4(1AI)^{29}$ Si species. The ²⁷Al signal at 55 ppm is additionally correlated with ²⁹Si signals in the -99 to -101 ppm range (blue band), which also arise from $Q^4(1\text{Al})$ species. The different correlated ²⁷Al-²⁹Si signals in the 2D ²⁷Al{²⁹Si} J-mediated spectrum in Figure 2a are assigned based on comparisons with previous 2D ²⁹Si{²⁹Si} and ²⁹Si{¹H} NMR analyses of calcined Si-SSZ-70,^[20] analyses of 2D ²⁷Al MQMAS spectra of Al-SSZ-70 (Figures S4, S5, Tables S1, S2), well-established semi-empirical correlations relating the isotropic ²⁷Al and ²⁹Si chemical shift values to the -T-O-Tbond angles,^[33–35] and prior literature.^[36] The predicted and experimental isotropic ²⁷Al and ²⁹Si chemical shifts associated with different T sites in calcined Al-SSZ-70 are compared in Figure S6. On the basis of isotropic ²⁹Si chemical shift values calculated for $Q^4(1Al)$ species in each T site (Table S3), the correlated signals at -99 to -101 ppm in the ²⁹Si dimension (blue band in Figure 2a) are assigned to framework Al-O-Si2 Q^4 (1Al) moieties, while those at -105, -107, and -108 ppm (red band; Figure 2a) are assigned, respectively, to Al-O-Si3 and Al-O-Si1a, Al-O-Si6, and Al-O-Si4b and Al-O-Si7b Q^4 (1Al) moieties. The correlated ²⁷Al-²⁹Si signals at 60, 55, and 49 ppm in the ²⁷Al dimension must therefore arise from ²⁷Al species that are covalently bonded (through bridging O atoms) to Si1a and Si3, Si6 and Si2, and Si4b and Si7b $Q^4(1AI)$ species, respectively. The positions of the ²⁷Al heteroatoms are further constrained by analysis of the isotropic ²⁷Al chemical shifts determined by 2D 27Al MQMAS analyses at different magnetic field strengths and temperatures (Figures S4, S5), which are compared with the calculated values for ²⁷Al atoms in each T site (Table S2, Figure S6). With the constraints provided by the 2D ²⁷Al{²⁹Si} J-mediated correlation spectrum, these analyses enable the ²⁷Al signals at 60, 55, and 49 ppm to be confidently assigned to fully crosslinked Al2a/b, Al3, and Al5b sites, respectively. The unambiguous identification of the different ²⁷Al-O-²⁹Si connectivities enables the specific locations of Al heteroatoms to be established, even for a complex zeolite, such as Al-SSZ-70.

Interestingly, octahedrally coordinated ²⁷Al species are also located within the aluminosilicate zeolite framework. Octahedrally coordinated framework ²⁷Al species in aluminosilicate zeolites are generally associated with framework defect sites and/or partial dealumination of the framework.^[37] The correlation of the ²⁹Si signal at -101 ppm from Si2 $Q^4(1\text{Al})$ species and the ²⁷Al signal at -5 ppm (blue band, Figure 2a) establishes that the octahedrally coordinated ²⁷Al species in Al-SSZ-70 are in fact covalently linked to Si2 $Q^4(1Al)$ species and are therefore in T1a/b or T3 sites. The presence of this weak correlated signal is confirmed by the 2D ²⁷Al{²⁹Si} J-HMQC spectrum acquired at 9.4 Tesla and 91 K (Figure S7). Because of steric hindrance near framework T1a and T3 sites, the presence of octahedrally coordinated Al1a or Al3 species is considered unlikely. By comparison, T1b is a partially crosslinked site that protrudes into the interlayer

Angew. Chem. Int. Ed. 2019, 58, 6255-6259

channels, where ²⁷Al atoms could coordinate to adsorbed water and/or -OH groups. Octahedrally coordinated Al1b species are therefore expected to be associated with significant hydrogen bonding.

Strong H-bonds associated with the octahedrally coordinated ²⁷Al species in calcined Al-SSZ-70 are identified by analysis of the 2D ²⁷Al¹H} heteronuclear correlation (HETCOR) spectrum of calcined Al-SSZ-70 (Figure 2b). The spectrum manifests correlated ²⁷Al¹H} signal intensities from ²⁷Al-¹H nuclear spin pairs that are dipole-dipole coupled through space, being principally sensitive to interactions over distances of < 5 Å.^[38] Analyses of 1D ¹H and 2D ²⁹Si{¹H} HETCOR NMR spectra of calcined Si- and Al-SSZ-70 (Figures S3, S8) show that both materials possess isolated and strongly H-bonded interlayer -OH species. The 2D ²⁷Al¹H} HETCOR spectrum of calcined Al-SSZ-70 in Figure 2b shows correlated intensities at 55 and 60 ppm in the ²⁷Al dimension and at 2.8–4.0 ppm (green band, Figure 2b) and 5.1–5.6 ppm (gray band, Figure 2b) in the ¹H dimension, which arise from tetrahedrally coordinated ²⁷Al species proximate to isolated interlayer -OH groups^[20] and nanopore-adsorbed water,^[39] respectively. These signals are consistent with the assignment of the ²⁷Al signals at 55 and 60 ppm to fully crosslinked Al2a/b and Al3 sites, respectively. By comparison, the 27 Al signal at -5 ppm is correlated with a broad, continuous distribution of ¹H signals from 2.8-14.3 ppm. The ¹H signals at 2.8–4.0 ppm (green band, Figure 2b) are assigned to isolated -OH species, those at 5.1-7.0 ppm (gray band, Figure 2b) to adsorbed water molecules, and those at 8.8-14.3 ppm (purple band, Figure 2b) to Hbonded -OH groups with -OH…O- distances of 2.5 Å to 2.8 Å as estimated from well-established semi-empirical correlations.^[39,40] The correlated ²⁷Al{¹H} signal intensities thus establish that the octahedrally coordinated ²⁷Al species are in close proximities to isolated and strongly H-bonded -OH moieties. All of the solid-state NMR results are therefore consistent with the assignment of the 27 Al signal at -5 ppm to partially crosslinked Al1b sites, which are bonded (through bridging oxygen atoms) to three framework Si atoms and protrude into the interlayer channels, where Al atoms are able to adopt octahedral configurations by coordinating with water molecules or -OH groups.

Notably, the majority of the Al heteroatoms in calcined Al-SSZ-70 are located in framework sites at the surfaces of the interlayer channels. Based on the analyses of the solidstate 2D NMR spectra, each of the ²⁷Al signals can be assigned with confidence to an individual T site within the zeolite Al-SSZ-70 framework structure. Specifically, the ²⁷Al signals at 60, 55, and 49 ppm are assigned to ²⁷Al atoms in fully crosslinked T-sites 2a/b, 3, and 5b, respectively, while the ²⁷Al signal at -5 ppm is assigned to octahedrally coordinated ²⁷Al atoms in T-site 1b. Importantly, the relative occupancies of the ²⁷Al heteroatoms in these different SSZ-70 framework sites are not the same. In fact, they are very different. Their relative populations are quantified by deconvolution of the 1D singlepulse ²⁷Al spectrum (Figure S9), yielding the fractional occupancies of Al atoms in each of the five T sites (Table S4) that are shown in the schematic structure of calcined Al-SSZ-70 (Figure 2c). The great majority of the ²⁷Al species (94%) are in T2a/b, T3, or T1b sites, which are located at the surfaces of the interlayer channels. The remainder of the ²⁷Al species (6%) are at T5b sites, which are located at the surfaces of the intralayer channels.

Because of the different positions and local structures of Al atoms within the SSZ-70 framework, the different heteroatom sites are expected to influence the catalyst adsorption and reaction properties. The catalytic cracking of long-chain alkanes by Al-SSZ-70 is characteristic of a largepore zeolite^[19] rather than one with both large- and mediumpore channel systems, as might be expected from the structure of the zeolite. This is fully consistent with the preferential siting of Al heteroatoms at the surfaces of the large-pore interlayer channels, and indicates that the catalytic cracking (and probably other) reactions occur primarily there. The results also account for the high catalytic activities of catalysts derived from delamination of SSZ-70:^[18,41] nearly all of the heteroatoms associated with the cation-exchange sites in Al-SSZ-70 are at the surfaces of the interlayer channels that are exposed upon exfoliation and therefore are accessible for post-synthetic modification and/or catalysis.

The locations of the majority of the Al heteroatoms at sites at the surfaces of the interlayer channels indicate that the bulky N,N'-diisobutylimidazolium cations used as OSDAs during zeolite synthesis direct the Al heteroatoms to specific sites in the Al-SSZ-70 framework. The roles of the OSDA in the preferential siting of Al heteroatoms in Al-SSZ-70 remain under investigation. In addition, the above analyses are expected to be useful for further studies on the structures of as-synthesized Al-SSZ-70 (Figure S10).

More broadly, recent research in zeolite materials has focused on generating active sites in specific regions of zeolites by designing zeolite architectures for specific reactions^[16] or directing heteroatoms to targeted locations within a zeolite framework.^[42] Such control over heteroatom locations is achievable in part for borosilicate zeolites by changing the OSDA and synthesis conditions.^[13] However, similar capabilities have been lacking for aluminosilicate zeolites, in part because of the absence of experimental techniques that are capable of resolving Al occupancies at different T sites. The results reported here demonstrate that solid-state 2D NMR analyses, in combination with synchrotron XRPD, can establish Al locations and occupancies in complicated aluminosilicate zeolite frameworks like SSZ-70. This opens prospects for adjusting the Al distribution, and correspondingly the catalytic properties, by judicious selection of OSDAs and zeolite synthesis conditions.

In summary, the preferential siting of Al heteroatoms at 5 of the 14 T sites in calcined Al-SSZ-70 has been established by using 2D ²⁷Al{²⁹Si} and ²⁷Al{¹H} NMR correlation spectra to determine the T-site connectivities and hydration environments of specific ²⁷Al sites. The analyses show that the majority of Al heteroatoms in Al-SSZ-70 are located at the surfaces of the interlayer channel regions, which are expected to strongly influence the adsorption and catalytic reaction properties of the material. Such insights provide a deeper atomic-level understanding of the adsorption and reaction properties of this emerging catalytic material. The approach used is general and can be expected to provide similar

GDCh

understanding for other heteroatom-containing zeolite catalysts, aiding in the future design of new catalytic materials with improved activity, selectivity, and stability.

Acknowledgements

This work was supported in part by the Chevron Energy Technology Company (Richmond, California, USA). The solid-state MAS NMR measurements at the University of California, Santa Barbara (UCSB), made use of the shared facilities of the UCSB MRL, supported by the MRSEC program of the NSF under Award No. DMR 1720256. Z.J.B. and B.F.C. thank the TGIR-RMN-THC Fr3050 CNRS for access to the 18.8 T DNP NMR facility at the CRMN and financial support was received from the EQUIPEX contract ANR-10-EQPX-47-01. S.S. acknowledges the Swiss National Science Foundation (Award No. 177761). We thank Drs. A. Cervellino and N. Casati for their assistance with the powder diffraction measurements on the Materials Science Beamline at the Swiss Light Source in Villigen, Switzerland.

Conflict of interest

The authors declare no conflict of interest.

Keywords: aluminum · NMR spectroscopy · solid acids · zeolites

How to cite: Angew. Chem. Int. Ed. 2019, 58, 6255–6259 Angew. Chem. 2019, 131, 6321–6325

- [1] W. J. Roth, et al., Nat. Chem. 2013, 5, 628-633.
- [2] B. Wang, A. P. Côté, H. Furukawa, M. O'Keeffe, O. M. Yaghi, *Nature* 2008, 453, 207–211.
- [3] E. T. C. Vogt, B. M. Weckhuysen, Chem. Soc. Rev. 2015, 44, 7342-7370.
- [4] C. Paolucci, et al., Science 2017, 357, 898-903.
- [5] V. Gábová, J. Dědeček, J. Čejka, Chem. Commun. 2003, 1196– 1197.
- [6] J. Dědeček, D. Kaucký, B. Wichterlová, O. Gonsiorová, Phys. Chem. Chem. Phys. 2002, 4, 5406-5413.
- [7] R. Gounder, E. Iglesia, J. Am. Chem. Soc. 2009, 131, 1958-1971.
- [8] J. Hun Kwak, H. Zhu, J. H. Lee, C. H. F. Peden, J. Szanyi, *Chem. Commun.* 2012, 48, 4758.
- [9] J. Dědeček, Z. Sobalík, B. Wichterlová, Catal. Rev. Sci. Eng. 2012, 54, 135–223.
- [10] J. A. van Bokhoven, T. L. Lee, M. Drakopoulos, C. Lamberti, S. Thie, J. Zegenhagen, *Nat. Mater.* 2008, 7, 551–555.
- [11] A. B. Pinar, L. Gómez-Hortigüela, L. B. McCusker, J. Pérez-Pariente, *Chem. Mater.* 2013, 25, 3654–3661.
- [12] S. Smeets, L. B. McCusker, C. Baerlocher, D. Xie, C. Y. Chen, S. I. Zones, J. Am. Chem. Soc. 2015, 137, 2015–2020.
- [13] S. Smeets, L. B. McCusker, C. Baerlocher, S. Elomari, D. Xie, S. I. Zones, J. Am. Chem. Soc. 2016, 138, 7099–7106.
- [14] S. I. Zones, A. Benin, S.-J. Hwang, D. Xie, S. Elomari, M.-F. Hsieh, J. Am. Chem. Soc. 2014, 136, 1462–1471.

- [15] J. R. Di Iorio, C. T. Nimlos, R. Gounder, ACS Catal. 2017, 7, 6663–6674.
- [16] E. M. Gallego, M. T. Portilla, C. Paris, A. León-Escamilla, M. Boronat, M. Moliner, A. Corma, *Science* 2017, 355, 1051–1054.
- [17] K. Muraoka, W. Chaikittisilp, Y. Yanaba, T. Yoshikawa, T. Okubo, Angew. Chem. Int. Ed. 2018, 57, 3742–3746; Angew. Chem. 2018, 130, 3804–3808.
- [18] R. C. Runnebaum, X. Ouyang, J. A. Edsinga, T. Rea, I. Arslan, S.-J. J. Hwang, S. I. Zones, A. Katz, ACS Catal. 2014, 4, 2364– 2368.
- [19] R. H. Archer, J. R. Carpenter, S.-J. Hwang, A. W. Burton, C.-Y. Chen, S. I. Zones, M. E. Davis, *Chem. Mater.* **2010**, *22*, 2563– 2572.
- [20] S. Smeets, Z. J. Berkson, D. Xie, S. I. Zones, W. Wan, X. Zou, M. F. Hsieh, B. F. Chmelka, L. B. McCusker, C. Baerlocher, J. Am. Chem. Soc. 2017, 139, 16803-16812.
- [21] S. I. Zones, T. V. Harris, *Microporous Mesoporous Mater.* **2000**, *35–36*, 31–46.
- [22] M. Haouas, F. Taulelle, C. Martineau, Prog. Nucl. Magn. Reson. Spectrosc. 2016, 94–95, 11–36.
- [23] L. Frydman, D. M. Grant, R. K. Harris, *Encycl. Nucl. Magn. Reson.* 2002, 9, 262–274.
- [24] S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Angew. Chem. Int. Ed. 2007, 46, 7286–7289; Angew. Chem. 2007, 119, 7424–7427.
- [25] S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, *Phys. Chem. Chem. Phys.* 2009, 11, 1237–1247.
- [26] J. Holzinger, P. Beato, L. F. Lundegaard, J. Skibsted, J. Phys. Chem. C 2018, 122, 15595–15613.
- [27] E. Dib, T. Mineva, E. Veron, V. Sarou-Kanian, F. Fayon, B. Alonso, J. Phys. Chem. Lett. 2018, 9, 19–24.
- [28] A. G. M. Rankin, P. B. Webb, D. M. Dawson, J. Viger-Gravel, B. J. Walder, L. Emsley, S. E. Ashbrook, *J. Phys. Chem. C* 2017, 121, 22977-22984.
- [29] A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley, J. Am. Chem. Soc. 1998, 120, 13194–13201.
- [30] P. Florian, E. Veron, T. F. G. Green, J. R. Yates, D. Massiot, *Chem. Mater.* 2012, 24, 4068–4079.
- [31] M. Valla, et al., J. Am. Chem. Soc. 2015, 137, 10710-10719.
- [32] D. Massiot, et al., C. R. Chim. 2010, 13, 117-129.
- [33] S. Ramdas, J. Klinowski, Nature 1984, 308, 521-523.
- [34] E. Lippmaa, A. Samoson, M. Magi, J. Am. Chem. Soc. 1986, 108, 1730–1735.
- [35] D. M. Dawson, R. F. Moran, S. E. Ashbrook, J. Phys. Chem. C 2017, 121, 15198–15210.
- [36] M. A. Camblor, A. Corma, M.-J. Díaz-Cabañas, C. Baerlocher, J. Phys. Chem. B 1998, 102, 44–51.
- [37] A. Omegna, J. A. van Bokhoven, R. Prins, J. Phys. Chem. B 2003, 107, 8854–8860.
- [38] M. T. Janicke, C. C. Landry, S. C. Christiansen, D. Kumar, G. D. Stucky, B. F. Chmelka, J. Am. Chem. Soc. 1998, 120, 6940–6951.
- [39] J. P. Yesinowski, H. Eckert, G. R. Rossman, J. Am. Chem. Soc. 1988, 110, 1367-1375.
- [40] X. Xue, M. Kanzaki, J. Am. Ceram. Soc. 2009, 92, 2803-2830.
- [41] M. Aigner, N. A. Grosso-Giordano, A. Okrut, S. Zones, A. Katz, *React. Chem. Eng.* 2017, 2, 842–851.
- [42] S. I. Zones, C. Y. Chen, A. Benin, S.-J. Hwang, J. Catal. 2013, 308, 213–225.

Manuscript received: November 27, 2018 Version of record online: March 29, 2019

Supporting Information

Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst Al-SSZ-70

Zachariah J. Berkson, Ming-Feng Hsieh, Stef Smeets, David Gajan, Alicia Lund, Anne Lesage, Dan Xie, Stacey I. Zones, Lynne B. McCusker, Christian Baerlocher, and Bradley F. Chmelka*

anie_201813533_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

1. Experimental section	S1
2. Comparison of ²⁹ Si environments in calcined AI- and Si-SSZ-70	S3
3. Improved NMR signal sensitivity under low-temperature measurement conditions	S4
4. Extracting isotropic ²⁷ AI chemical shifts from 2D ²⁷ AI MQMAS spectra	. S5
5. Assignment of the correlated signals in the 2D ²⁷ Al{ ²⁹ Si} <i>J</i> -HMQC spectra	. S9
6. Hydration environments of ²⁹ Si species in calcined Si- and Al-SSZ-70	S11
7. Fractional AI occupancies at each T site in AI-SSZ-70	S12
8. Comparison of calcined and as-made AI-SSZ-70	S13
9. Additional references	S14

1. Experimental section

Materials. The AI-SSZ-70 materials were synthesized according to the protocol described previously^[1] using N,Ndiisobutyl-imidazolium hydroxide as the organic structure-directing agent (OSDA). 6 mmol of tetraethyl orthosilicate (TEOS) and 0.25 mmol aluminum isopropoxide was added to a solution containing 3 mmol of diisobutyl-imidazolium hydroxide (from a 0.48 M solution) in a tared Teflon cup for a 23 ml Parr pressure reactor. The Si/AI ratio in the synthesis mixture was 24. The reagents were then kept in the closed cup for 2 days to allow for the hydrolysis of the metal esters to occur. The top was then taken off the cup and the cup was placed in a fume hood for the evaporation of the alcohol byproducts and some of the water while the mass loss was monitored to determine the water/silica ratio. After several days of evaporation, water was added to the cup to achieve the desired water/silica ratio of 7. Using a balance in a fume hood, 3 mmol of HF (from a 48 wt% HF solution) were carefully added dropwise. The reactor was then closed up and loaded onto a rotating spit (43 RPM) and heated to 150 °C for 1-2 weeks. The reaction progress was assessed every 7-10 days by extracting a small aliquot, washing the reaction product, and XRD analysis. The reaction rate may be increased up by providing seed crystallites (3% of overall silica content) from an all-silica synthesis conducted as this one but without the AI reagent.

After the phase purity of the AI SSZ-70 sample was confirmed by XRD analysis, the sample was loaded as a thin dispersion of powder into a thin Pyrex dish for calcination. The dish was loaded into a programmable convection-heated oven with an air flow of 20 SCFT air per minute. The material was heated at 1 °C/min up to 120 °C. It was maintained at that temperature for 2 h to remove as much water as possible. The temperature was then increased by 1 °C/min to 540 °C. The material was maintained at that temperature in the oven. The mass loss from decomposition of the guest organic molecule is typically in the range of 15-18 wt%.^[1] The Si/AI ratio in the final crystalline product is approximately 25.^[1]

Characterization. Synchrotron XRPD data were collected on both calcined and as-synthesized samples of Al-SSZ-70 in a rotating 0.3 mm capillary on the MS-Powder beamline at the Swiss Light Source in Villigen, Switzerland (wavelength 0.70848 Å, MYTHEN II detector).^[2]

Solid-state 1D and 2D MAS NMR spectroscopy was used to analyze the ¹H, ²⁷Al, and ²⁹Si environments in calcined Al-SSZ-70. The ¹H and ²⁹Si chemical shifts were referenced to tetramethylsilane (TMS) at 0.0 ppm, using tetrakis(trimethylsilyl)-silane as a secondary external reference. The ²⁷Al spin-lattice *T*₁ relaxation times were measured using saturation recovery experiments to be 40 ms or less at 295 K and 650 ms or less at 90-100 K for all of the ²⁷Al signals. The ²⁷Al shifts were referenced to a 0.5 M solution of Al(NO₃)₃ at 0.0 ppm as an external reference. The 1D single-pulse ²⁷Al and 2D ²⁷Al triple-quantum MAS (3QMAS) spectra measured at 295 K and 18.8 T were acquired on a Bruker AVANCE-III Ultrashield Plus 800 MHz (18.8 T) narrow-bore spectrometer operating at a Larmor frequency of 208.520 MHz for ²⁷Al and using a Bruker 2.5 mm broadband double-resonance H-X probehead. The 2D ²⁷Al 3QMAS spectrum in Fig. S4 was obtained at 35 kHz MAS, using 2400 transients, a repetition time of 0.1 s, an incremental *t*₁ step size of 14.29 µs, and 200 increments in the indirect isotropic dimension for a total acquisition time of 27 h. The 1D quantitative single-pulse ²⁷Al spectrum

was acquired using a 0.27 μ s π /12 pulse, 512 transients, and a repetition time of 0.2 s. Low temperature MAS NMR conditions (<100 K) were used to improve NMR signal sensitivity and thereby enable the acquisition of 2D ²⁷Al{²⁹Si} heteronuclear multiple quantum correlation (HMQC) NMR spectra for materials with natural abundance ²⁹Si (4.7%), as discussed in Section 3 below. The 2D ²⁷Al{²⁹Si} *J*-HMQC and ²⁷Al{¹H} HETCOR spectra in Fig. 2 were acquired on a Bruker ASCEND 800 MHz (18.8 T) DNP NMR spectrometer operating at Larmor frequencies of 799.781, 208.387 and 158.864 for ¹H, ²⁷Al, and ²⁹Si, respectively, and equipped with a 3.2 mm triple-resonance HXY low-temperature MAS probehead. The 2D ²⁷Al{²⁹Si} *J*-HMQC spectrum was acquired with an experimentally-optimized T delay of 14.4 ms to refocus the weak (<10 Hz) ²⁷Al-O-²⁹Si scalar *J* couplings, a repetition time of 2 s for each of 512 transients, 12.5 kHz MAS, a rotor-synchronized incremental *t*₁ step size of 80 μ s, and 50 increments in the indirect ²⁹Si dimension for a total acquisition time of 14 h. The 2D ²⁷Al{¹H} heteronuclear correlation (HETCOR) spectrum in Figure 2b was acquired using homonuclear ¹H-¹H eDUMBO-1₂₂ decoupling^[4] during the ¹H evolution period, which yields narrower ¹H linewidths (2-3 ppm fwhm), compared to the 1D ¹H spectrum without decoupling (4-5 ppm fwhm, Fig. S3).

The 2D ²⁷Al 3QMAS, ²⁹Si{¹H} HETCOR, and ²⁷Al{²⁹Si} *J*-HMQC spectra measured at 9.4 T (Supporting Information Figures S5, S7b, and S8) were acquired on a Bruker ASCEND 400 MHz (9.4 T) DNP NMR spectrometer operating at Larmor frequencies of 400.203, 104.283, and 79.501 MHz for ¹H, ²⁷Al, and ²⁹Si nuclei, respectively and equipped with a 3.2 mm triple-resonance HXY low-temperature MAS probehead. The 2D ²⁷AI MQMAS spectrum acquired at 9.4 T and 295 K was obtained using a repetition time of 0.2 s for each of 2400 transients, 10 kHz MAS, an incremental t_1 step size of 50 µs, and 50 increments in the indirect isotropic dimension for a total acquisition time of 7 h. The 2D ²⁷AI 3QMAS spectrum acquired at 9.4 T and 93 K was obtained using 960 transients, a repetition time of 1 s, a MAS rate of 10 kHz, an incremental t₁ step size of 50 µs, and 50 increments in the indirect isotropic dimension for a total acquisition time of 13 h. The 2D ²⁹Si{¹H} HETCOR spectrum of calcined Si-SSZ-70 was acquired under DNP-NMR conditions as previously reported.^[5] The 2D ²⁹Si{¹H} HETCOR spectrum of calcined Al-SSZ-70 was acquired using a ²⁹Si{¹H} contact time of 0.2 ms, 512 transients, a repetition time of 1.2 s, an incremental t_1 step size of 64 µs, and 32 increments in the indirect ¹H dimension for total acquisition time of 5.5 h. Homonuclear ¹H-¹H eDUMBO-1₂₂ decoupling^[4] was applied during the ¹H evolution periods to improve resolution in the ¹H dimensions. For all of the 2D ²⁷AI{²⁹Si} *J*-HMQC spectra, 100 kHz of continuous-wave ¹H decoupling was applied during the rotor-synchronized τ delay periods. The signal sensitivity of the 2D ²⁷Al{²⁹Si} *J*-HMQC spectra was enhanced by applying a 1 ms ²⁷Al adiabatic double-frequency sweep (DFS) pulse during the preparation period to invert the ²⁷Al satellite transitions.^[6] All of the 2D ²⁷Al 3QMAS spectra were obtained using a 20 µs z-filter to eliminate zero-quantum coherences and processed using a shearing transformation to scale the isotropic frequency axes. All of the 1D and 2D spectra, with the exception of the 2D²⁷AI 3QMAS spectra, were acquired with 100 kHz heteronuclear SPINAL-64 ¹H decoupling^[7] during the acquisition period. All NMR lineshape simulations and spectral deconvolutions were performed using dmfit software.[8]

Before all NMR measurements, the calcined AI-SSZ-70 sample was stored in a sealed chamber containing a saturated potassium chloride solution to maintain an atmosphere with 85% relative humidity. This was to ensure full hydration of the aluminosilicate framework and maximum NMR visibility (>97%) of ²⁷Al species.^[3] To assess for the possibility of highly distorted ²⁷Al species with very large quadrupolar couplings that may not be detected in the ²⁷Al NMR experiments (so-called "NMR-invisible alumina"), ²⁷Al spin-counting measurements were conducted using aluminum nitride (AIN) as an external spin-counting reference. AlN and calcined AI-SSZ-70 samples were loaded into separate 3.2 mm rotors and the sample masses were carefully measured. The fully-relaxed 1D single-pulse ²⁷Al MAS NMR spectra of AIN and AI-SSZ-70 were acquired under the same experimental conditions at 18.8 T, 295 K, 20 kHz MAS, and using a 0.67 µs π/12 pulse for rf excitation. After adjusting for the water content (*ca.* 10 wt% by TGA) and the Si/Al ratio (~25) of the AI-SSZ-70 sample, integration of the 1D ²⁷Al NMR spectra showed that >97% of the ²⁷Al species in calcined AI-SSZ-70 are detected, corroborating that there are no significant extents of NMR-invisible ²⁷Al species.

2. Comparison of ²⁹Si environments in calcined AI- and Si-SSZ-70

Analyses of the 1D ²⁹Si MAS NMR spectra show that the local ²⁹Si framework environments in calcined SSZ-70 are almost identical in the siliceous and aluminosilicate forms. The quantitative 1D single-pulse ²⁹Si NMR spectrum of calcined Si-SSZ-70 (Fig. S1a) exhibits ²⁹Si signals in the Q⁴ region at -105 ppm, -110 ppm, -113 ppm, -115 ppm, and -119 ppm from different fully-crosslinked Q⁴(0Al) framework ²⁹Si species. The Q^{*m*}(*n*Al) notation indicates a tetrahedrally-coordinated Si atom covalently linked through bridging oxygen atoms to *m* other Si or Al atoms, of which *n* are Al. The partially-crosslinked ²⁹Si silanol species at the interlayer channel surfaces give rise to ²⁹Si signals in the Q³(0Al) region at -97 ppm, -99 ppm, and -101 ppm. These ²⁹Si signals were previously discussed and partially assigned on the basis of dynamic nuclear polarization (DNP-)enhanced solidstate 2D ²⁹Si{²⁹Si} and ²⁹Si{¹H} NMR correlation spectra.^[5] In the quantitative single-pulse ²⁹Si MAS NMR spectrum of calcined Al-SSZ-70 (Fig. S1b), all of the same ²⁹Si signals are detected, with similar peak positions and linewidths as the spectrum of the siliceous form. The relatively narrow and well-resolved ²⁹Si NMR signals are consistent with the high crystallinity of Si- and Al-SSZ-70 crystallized in the presence of fluorine as a mineralizing agent, as these materials were.^[1] Subtle differences in the relative intensities of the different ²⁹Si signals in the ²⁹Si NMR spectra of Al- and Si-SSZ-70 are attributed to the influences of incorporation of Al heteroatoms into the Al-SSZ-70 framework. Bonding of framework ²⁹Si atoms through bridging oxygen atoms to Al atoms in zeolites is well-known to displace the ²⁹Si NMR signals by +6-7 ppm:^[9] a Q⁴(1Al) ²⁹Si species at a given T site will exhibit an isotropic ²⁹Si chemical shift that is 6-7 ppm greater than the isotropic ²⁹Si chemical shift of the corresponding Q⁴(0Al) ²⁹Si species at the same T site. The ²⁹Si signals at -113 and -115 ppm in the ²⁹Si spectrum of Al-SSZ-70 exhibit diminished relative intensity compared to the ²⁹Si spectrum of Si-SSZ-70, which is attributed to the displacement of ²⁹Si signals from Q⁴(1Al) species to higher ppm values. Due to the small absolute quantity of Al in the Al-SSZ-70 material (Si/Al~25^[10]) and overlapping ²⁹Si NMR signals from the diversity of Q⁴(0Al) and Q³(0Al) species in SSZ-70, the ²⁹Si signals from Q⁴(1Al) species are not resolved and cannot be quantified from the 1D ²⁹Si MAS NMR spectra alone.

Figure S1. Solid-state 1D quantitative single pulse ²⁹Si MAS NMR spectra of calcined (a) Si-^[5] and (b) Al-SSZ-70 acquired at 11.7 T, 298 K, and 12.5 kHz MAS.

3. Enhancement of NMR signal sensitivity under low-temperature measurement conditions

The improved NMR signal sensitivity obtained under low-temperature measurement conditions arises in part from the greater Boltzmann distribution of nuclear spin polarization (M_0) at low temperatures, which is approximately proportional to $T^{1,[11]}$ Furthermore, thermal noise arises from random electronic fluctuations in the NMR detection coil, reducing signal-to-noise, and is proportional to $T^{1/2,[11]}$ All else being equal, the overall NMR signal-to-noise ratio, S/N, thus has an approximate temperature dependence of $T^{3/2}$. Measurements conducted at 95 K, such as reported here, may therefore be expected to exhibit *ca*. 5.5x greater signal-to-noise ratios compared to measurements conducted at 295 K. However, the experimental repetition time (interscan delay) is limited by the nuclear spin-lattice (T_1) relaxation times, which tend to increase at lower temperatures, requiring increased experimental times. Fig. S2 shows the fully-relaxed 1D ²⁷Al echo NMR spectra acquired at different temperatures of (a) 93 K and (b) 295 K. At 95 K, a signal-to-noise ratio of ~31 is achieved after only 16 transients (0.5 min experimental time), while at 295 K a lower signal-to-noise ratio of ~15 is achieved after 4 min acquisition time. This demonstrates the substantial time savings (>25x) achieved by using low-temperature acquisition NMR conditions.

Figure S2. Solid-state 1D ²⁷Al echo NMR spectra of calcined Al-SSZ-70 acquired at 9.4 T, 10 kHz MAS, and (a) 93 K or (b) 295 K.

The ²⁷Al, ²⁹Si, and ¹H NMR signals from calcined Al-SSZ-70 exhibit temperature dependent positions and linewidths that are consistent with past results reported for surfactant-templated layered silicates,^[12] mesostructured MFI-type zeolite nanosheets,^[13] and calcined Si-SSZ-70.^[5] For example, the 1D ¹H NMR spectrum of calcined Al-SSZ-70 acquired at room temperature (Fig. S3a) exhibits well-resolved signals from isolated Al-OH and/or Si-OH moieties at 2.1-2.8 ppm, adsorbed H₂O at 5.3 ppm, and strongly H-bonded moieties at 7.1-11.5 ppm. These signals indicate that under room temperature conditions, the different ¹H species in the hydrated Al-SSZ-70 interlayer regions are relatively mobile. At 95 K and under otherwise identical conditions (Fig. S3b), the ¹H NMR signals from adsorbed H₂O and strongly H-bonded –OH moieties broaden substantially (4-5 ppm full-width-half-maximum, fwhm) and are displaced. This broadening manifests in part the inhomogeneous distributions of ¹H moieties arising from freezing out of motions of adsorbed water molecules under the low temperature conditions. Interestingly, the ¹H signals at 2.4 and 2.8 remain relatively narrow (<1 ppm fwhm), consistent with the assignment of these signals to Si-OH and/or Al-OH moieties that are relatively isolated from adsorbed water molecules or other -OH species.

Figure S3. Solid-state 1D (a) single-pulse ¹H and (b) ¹H echo NMR spectra of calcined AI-SSZ-70 acquired at 18.8 T, 12.5 kHz MAS, and (a) 295 K or (b) 95 K. Asterisks indicate spinning sidebands.

4. Extracting isotropic ²⁷AI chemical shifts from 2D ²⁷AI MQMAS spectra

The ²⁷Al heteroatoms at different T sites in calcined Al-SSZ-70 are expected to exhibit different isotropic ²⁷Al chemical shifts that yield different ²⁷Al NMR signals in the solid-state ²⁷Al NMR spectra, enabling the T site positions and occupancies of the different Al species to be identified. The 1D and 2D ²⁷Al MAS NMR spectra acquired at 18.8 T (Figs. 2, S4, S7, S9, S10a) show well-resolved ²⁷Al signals at 61 ppm, 56 ppm, and 49 ppm (denoted *A*, *B*, and *C*, respectively) that arise from ²⁷Al atoms in tetrahedrally-coordinated environments, as well as a signal at -2 ppm (denoted *D*) arising from ²⁷Al in octahedrally-coordinated environments. The well-resolved and relatively narrow ²⁷Al signals suggest that the ²⁷Al heteroatoms are preferentially sited at specific T sites in calcined Al-SSZ-70, rather than randomly distributed. The ²⁷Al quadrupolar and chemical shift parameters for the different ²⁷Al species in Al-SSZ-70 are determined by using 2D ²⁷Al triple-quantum MAS (3QMAS) techniques.^[14] The 2D ²⁷Al 3QMAS spectra of Al-SSZ-70 (Figs. S4, S5) are presented as 2D contour plots with ²⁷Al signals plotted across MAS and isotropic dimensions on the abscissa and ordinate, respectively, with frequency units of Hz/MHz or ppm. The MAS dimension manifests the same MAS NMR lineshape as detected in conventional 1D ²⁷Al signals, with anisotropic broadening effects removed that are associated with second-order quadrupolar interactions.^[14] The isotropic chemical shifts, $\delta_{CS,i80}$, are determined for each ²⁷Al signal by fitting the ²⁷Al lineshapes for the ²⁷Al signals A, *B*, and *C* from tetrahedrally-coordinated ²⁷Al signals, determined by the second-order and species. The quadrupolar coupling constants C_{0} , asymmetry parameters η , and $\delta_{CS,i80}$ values for each ²⁷Al signals, determined by fitting the horizontal ²⁷Al signals A, *B*, and *C* from tetrahedrally-coordinated ²⁷Al signals, determined by fitting the horizontal ²⁷Al signals A. *B*, and *C* f

Isotropic ²⁷Al chemical shifts of tetrahedrally-coordinated ²⁷Al species in aluminosilicate materials correlate linearly to the mean T-O-T bond angle, θ ', for a given T site. A commonly applied semi-empirical correlation, developed by Lippmaa, et al,^[15,16] relates the ²⁷Al isotropic chemical shift to the mean -Al-O-Si-bond angle for a given T site:

$$\delta_{\text{CS,iso}} = -0.5\theta' + 132 \text{ (ppm)} \tag{Eqn. S1}$$

This equation relies on the average T site geometry obtained from powder diffraction measurements, which are not always representative of the local geometry around AI sites that make up a small fraction of the overall number of T sites.^[17] Nevertheless, it provides a reasonable approximation for high-silica zeolites with mean -AI-O-Si- bond angles less than 180 degrees^[18] such as AI-SSZ-70 (Si/AI ~ 25), and provides an additional constraint on the assignments of the different ²⁷AI signals in the ²⁷AI NMR spectra of AI-SSZ-70. The predicted isotropic ²⁷AI chemical shifts, calculated from the known structure of calcined Si-SSZ-70 and Eqn. S1, are tabulated in Table S2, shown alongside the corresponding T sites in the schematic diagram in Fig. S6a, and compared with the experimentally-determined $\delta_{CS,iso}$ values of 27 AI signals *A*, *B*, and *C* in Fig. S4b. On the basis of this comparison, ²⁷AI signal *A* at $\delta_{CS,iso} = 62$ ppm is assigned to ²⁷AI species in fully-crosslinked T2a and T2b sites, which have predicted $\delta_{CS,iso}$ values of 51 and $\delta_{CS,iso} = 57$ ppm is assigned to ²⁷AI signal *B* at $\delta_{CS,iso} = 57$ ppm, respectively. Signal *C* at $\delta_{CS,iso} = 50$ ppm is tentatively assigned to ²⁷AI atoms in T5b sites (predicted to be at 53 ppm), though the agreement between the predicted and experimental ²⁷AI $\delta_{CS,iso}$ values of 52 D ²⁷AI MQMAS spectra acquired at different magnetic field strengths and temperatures, shown in Fig. S5. At lower magnetic field strengths (9.4 T) the ²⁷AI signals are modestly displaced and broadened by comparison to the spectra obtained at 18.8 T due to the greater contribution of quadrupolar broadening at the lower magnetic field strengths. (9.4 T) the ²⁷AI signals are broadened further in both the MAS and isotropic dimensions, consistent with inhomogeneous temperature-dependent broadening effects, as discussed in Section 3 above.

Elucidating the nature of the octahedrally-coordinated ²⁷Al species that give rise to ²⁷Al signal *D* is more challenging, as octahedrally-coordinated ²⁷Al species in zeolite frameworks are rare, though may arise as products of partial reversible dealumination combined with hydration effects.^[18] Signal *D* could also be attributed to extra-framework alumina species such as residual alumina gel remaining in the material after the hydrothermal synthesis and calcination. However, though signal *D* is relatively broad in the MAS dimension of the 2D ²⁷Al MQMAS spectrum, this broadening arises primarily from anisotropic quadrupolar interactions, as evidenced by the relatively narrow linewidth (2 ppm full-width half-maximum, FWHM) associated with the signal in the isotropic dimension in Fig. S4a. This indicates that signal *D* arises from a narrow distribution of ²⁷Al species in non-symmetric environments, which is typically not the case for extra-framework alumina species. The ²⁷Al quadrupolar parameters as previously observed in aluminosilica glasses^[20] or aluminosilicate zeolites with non-ordered Al distributions.^[21] The 2D ²⁷Al²⁹Si} through-bond-mediated NMR correlation spectra and analyses discussed below provide further evidence that the ²⁷Al signal in the octahedral region is associated with the aluminosilicate zeolite framework.

Figure S4. (a) Solid-state 2D triple-quantum (3Q) MAS ²⁷Al NMR spectrum of calcined AI-SSZ-70 acquired at 18.8 T, 298 K, and 35 kHz MAS, with MAS and isotropic projections shown along the horizontal and vertical axes, respectively. Horizontal cross-sections at isotropic shifts of 50, 58, and 62 ppm are extracted from the 2D ²⁷Al 3QMAS spectrum and shown in (b). The red dotted lines are simulations of the ²⁷Al lineshapes obtained using the parameters listed in Table 1 and the orange lines are predicted ²⁷Al isotropic chemical shifts for ²⁷Al heteroatoms sited at each of the different T sites in AI-SSZ-70, calculated using Eqn. S1.

Table S1.	²⁷ AI c	quadrupolar	parameters	and isotro	pic chemical	shifts fo	or calcined	AI-SSZ-70 ^a
-----------	--------------------	-------------	------------	------------	--------------	-----------	-------------	------------------------

²⁷ Al signal:	Α	В	С	D
$\delta_{\text{CS,iso}}(\text{ppm})$	62	57	50	1.3
C _Q (MHz)	2.2	3.0	2.4	5.5 ^c
η^{b}	0.5	0	0.6	- ^c

^a Extracted from analysis of the 2D ²⁷Al 3QMAS spectrum in Fig. S2.

^b The fits of the ²⁷Al NMR lineshapes were found to be generally insensitive to the asymmetry parameter η , similar to previous ²⁷Al 3QMAS NMR analyses of aluminosilicate zeolites.^[22]

^c The ²⁷Al signal *D* in the six-coordinate region was fitted by using a single quadrupolar Czjzek lineshape, which reflects a distribution of quadrupolar parameters characterized by a maximum C_0 value of 5.5 MHz.

Figure S5. Solid-state 2D 3QMAS ²⁷AI NMR spectra of calcined AI-SSZ-70 acquired at 9.4 T, 10 kHz MAS, and (a) 298 K or (b) 93 K. Solid-state 1D ²⁷AI echo MAS NMR spectra acquired under the same conditions are shown along the horizontal axes for comparison with the MAS projections, and the isotropic projections are shown along their respective vertical axes.

T-site	²⁷ Al δ _{CS,iso} (ppm)		
1a	56		
1b	_b		
2a	61		
2b	61 [°]		
3	58		
4a	55		
4b	55		
5a	57		
5b	52		
6	53		
7a	53		
7b	55		
8a	55		
8b	54		

^a Calculated using the mean -T-O-T- angles for each T site from the structure of calcined Si-SSZ-70^[5] and Eqn. S1.

^b T1b is a partially-crosslinked site protruding into the interlayer channels of calcined AI-SSZ-70 and is associated with at least one hydroxyl group. Eqn. S1 does not account for AI-OH bonds, which are expected to influence the ²⁷Al isotropic shifts.

^c T2b may be either completely- or partially- crosslinked. This value is for completely-crosslinked Al2b sites.

5. Assignment of the correlated signals in the 2D ²⁷Al{²⁹Si} J-HMQC spectra

The different correlated ²⁷Al-²⁹Si signals in the 2D ²⁷Al{²⁹Si} *J*-mediated spectra (Figs. 2a, S7) are assigned based on comparisons with previous 2D ²⁹Si{²⁹Si} and ²⁹Si{¹H} NMR analyses of calcined Si-SSZ-70,^[5] analyses of 2D ²⁷Al MQMAS spectra (Figs. S4, S5), well-established semi-empirical correlations relating the isotropic ²⁷Al and ²⁹Si chemical shift values to the mean -T-O-T- bond angles and T-O bond lengths,^[15,23–26] and prior literature.^[9,27] Fig. S7 shows a comparison of the 2D ²⁷Al{²⁹Si} *J*-HMQC spectra of Al-SSZ-70 acquired at 18.8 T and 95 K (b, same spectrum as Fig. 2a) and at 9.4 T and 91 K (b), both of which exhibit all of the same correlated signal intensities but with ²⁷Al signals that are modestly broadened and displaced in (b) because of the larger contribution from 2nd-order quadrupolar interactions at the lower magnetic field strengths. Correlated ²⁷Al-²⁹Si signals are resolved in the 2D *J*-HMQC spectra at ²⁹Si shifts of -107, -105, and -101 to -99 ppm. These are assigned to different Q⁴(1Al) ²⁹Si species by comparison of the experimental Q⁴(1Al) ²⁹Si chemical shifts to values calculated using a well-established semi-empirical correlation relating the Q⁴(1Al) ²⁹Si chemical shifts to the average -T-O-T- bond angles, θ' :^[23,24]

$$\delta = 151 - 266 \sin\left(\frac{\theta'}{2}\right) \text{ (ppm)}$$
 (Eqn. 2)

The $Q^4(1Al)$ ²⁹Si isotropic chemical shift values calculated for each T site in Al-SSZ-70 are tabulated in Table S3 and shown alongside the corresponding T sites in the schematic diagram in Fig. S6a. Based on these values, the $Q^4(1Al)$ ²⁹Si signals at -101 ppm resolved in the 2D ²⁷Al{²⁹Si} J-HMQC spectra arises from $Q^4(1Al)$ Si2a/Si2b, while those at -105 ppm manifest overlapping ²⁹Si signal contributions from $Q^4(1Al)$ Si1a and Si3. The $Q^4(1Al)$ signals at -107 ppm may arise from $Q^4(1Al)$ Si4a,4b,5a,6,7b, and/or 8a, but can be assigned more precisely on the basis of the correlated signal intensities in the 2D ²⁷Al{²⁹Si} spectra and the ²⁷Al MQMAS analyses. The ²⁷Al signal at 55 ppm is correlated with ²⁹Si signals at -99 to -101 ppm from $Q^4(1Al)$ Si2, consistent with its assignment to Al3 as discussed above. Al3 species are expected to be covalently linked (through bridging oxygen atoms) to Si6 species, and so the correlated ²⁷Al-²⁹Si signal at -107 ppm in the ²⁹Si dimension and 55 ppm in the ²⁷Al dimension is assigned to Al3-O-Si6 moleties. From the ²⁷Al MQMAS analyses discussed above, the ²⁷Al-²⁹Si signal at $\delta_{CS,iso} = 50$ ppm most likely arises from Al5b species, consistent with the assignment of the correlated ²⁷Al-²⁹Si signal at -107 ppm in the ²⁹Si dimension and 49 ppm in the ²⁷Al dimension to Al5b-O-Si4b and Al5b-O-Si7b moleties. Fig. S6a shows a structural diagram of the calcined Al-SSZ-70 structure with each T site labelled with the associated isotropic ²⁷Al (red) and $Q^4(1Al)$ ²⁹Si (blue) chemical shifts predicted from Eqn. S1 and S2. For comparison, Fig. S6b shows the experimental isotropic ²⁷Al and $Q^4(1Al)$ ²⁹Si atoms. The comparison shows that the agreement between predicted and experimental isotropic chemical shifts is very good, within 1-2 ppm for all of the ²⁷Al and ²⁹Si species.

Figure S6. Schematic diagrams of the structures of calcined AI-SSZ-70 (a) indicating the isotropic ²⁷AI (red) and ²⁹Si (blue) chemical shifts for ²⁷AI or $Q^4(1AI)^{29}Si$ species in each T site predicted from Eqns. S1 or S2; and (b) with the isotropic ²⁷AI (red) and ²⁹Si (blue) chemical shifts (in ppm) determined experimentally from the NMR analyses in Fig. 2 and S4,S5,S7. The atoms labeled are those pertinent to the discussion in the main manuscript, with orange spheres in (b) indicating the five T sites that are partially occupied by AI atoms and the small blue spheres indicating the 10 T sites partially occupied by $Q^4(1AI)$ Si atoms. The remaining grey spheres represent T sites occupied by $Q^4(0AI)$ Si atoms that are not directly bonded to framework AI atoms; their ²⁹Si isotropic chemical shifts have been omitted for reasons of clarity but are reported in ref. [5].

Figure S7. Solid-state 2D ²⁷Al{²⁹Si} *J*-mediated NMR correlation spectra of calcined Al-SSZ-70 acquired at (a) 18.8 T, 12.5 kHz MAS, and 97 K (same spectrum as Figure 2a) and (b) 9.4 T, 8 kHz MAS, and 91 K. Solid-state 1D ²⁷Al echo and ²⁹Si{¹H} CPMAS spectra acquired under the same conditions are shown along the corresponding axes for comparison with the 1D projections of the 2D spectra.

T-site	Q [*] (1AI) ²³ Siδ(ppm)				
1a	-105				
1b	_a _				
2a	-101				
2b	-101 ^b				
3	-105				
4a	-108				
4b	-108				
5a	-107				
5b	-111				
6	-108				
7a	-111				
7b	-108				
8a	-108				
8b	-110				

Table S3. Predicted ²⁹Si isotropic chemical shift values δ for Q⁴(1Al) ²⁹Si atoms in each T site in Al-SSZ-70

^a T1b is a partially-crosslinked site protruding into the interlayer channels of calcined AI-SSZ-70 and is associated with at least one hydroxyl group. Eqn. 2 does not account for Si-OH bonds, which are known to influence the ²⁹Si isotropic shifts.

^b T2b may be either completely- or partially- crosslinked. The reported value is for completely-crosslinked Si2b sites.

6. Hydration environments in calcined Si- and AI-SSZ-70

The different partially-crosslinked T sites in the interlayer channel regions of calcined SSZ-70 are associated with -OH groups with different extents of hydrogen bonding that yield correlated ²⁹Si{¹H} or ²⁷Al{¹H} signal intensities in the 2D ²⁹Si{¹H} and ²⁷Al{¹H} HETCOR spectra in Figs. 2b and S8. For example, the 2D ²⁹Si{¹H} HETCOR spectrum of calcined Si-SSZ-70 in Fig. S8a (acquired under DNP-NMR conditions, see ref. [5]) shows ²⁹Si signals in the -96 to -99 ppm range from partially-crosslinked Q³(0Al) ²⁹Si species that are correlated with ¹H signals at 3.0 ppm (green shaded region), 7.0 ppm, and 8.8 ppm (red shaded region), which arise respectively from isolated Si-OH moieties, DNP solvent molecules, and nests of H-bonded Si-OH species. ^[5] Partially resolved ²⁹Si signals in the -105 to -112 ppm range arise from fully-crosslinked Q⁴ species in the Si-SSZ-70 celite framework. By comparison, the 2D ²⁹Si{¹H} HETCOR spectrum of calcined AI-SSZ-70 (Fig. S8b) shows correlated signal intensities at ²⁹Si chemical shifts of -98 to -102 ppm from Q³(0Al) species that are correlated to ¹H signals from isolated -OH groups in the 0-3.7 ppm range and from H-bonded -OH groups in the 7.6 to 11.1 ppm range. Additional correlated signal intensities at ²⁹Si chemical shifts of -104 to -114 ppm arise from overlapping ²⁹Si signals from fully-crosslinked Q⁴(0Al) and Q⁴(1Al) species, while the broad correlated signals at 6.9 ppm in the ¹H dimension and -98 to -107 ppm in the ²⁹Si gis species. The relatively low signal-to-noise ratio (S/N ~ 3) of the 2D ²⁹Si{¹H} HETCOR spectrum precludes more detailed analysis of the spectrum and is likely due to the low density of ¹H species and the inhomogeneously-broadened ²⁹Si and ¹H signals. Despite the low sensitivity, the resolution of the 2D ²⁹Si{¹H} HETCOR spectrum is sufficient to determine that different types of isolated and strongly H-bonded -OH species are present in calcined AI-SSZ-70, similar to its siliceous anal

We note that in the 2D ²⁷Al{¹H} HETCOR spectrum in Fig. 2b, there are no detectable ²⁷Al-¹H intensity correlations from tetrahedrally-coordinated ²⁷Al species and strongly H-bonded -OH (¹H shifts >7.5 ppm). This suggests that few of the tetrahedrally-coordinated ²⁷Al species are located at partially-crosslinked Al2b sites, which are expected to be associated with nests of strongly H-bonded hydroxyl moieties.

Figure S8. Solid-state 2D ²⁹Si{¹H} HETCOR spectra of calcined (a) Si-SSZ-70 and (b) Al-SSZ-70. Solid-state 1D ²⁹Si{¹H} CPMAS or ¹H echo spectra are shown along the horizontal or vertical axes, respectively, for comparison with the 1D projections of the 2D spectra. The spectra in (a) were acquired under DNP-NMR conditions at 9.4 T, 10 kHz MAS, 95 K, with ²⁹Si{¹H} contact time of 0.2 ms, in the presence of 16 mM TEKPol biradical in TCE (DNP solvent), and under 263 GHz microwave irradiation (adapted from Ref. [5]). The spectra in (b) were acquired under low-temperature NMR conditions of 9.4 T, 10 kHz MAS, 93 K, and with ²⁹Si{¹H} contact times of 0.2 ms.

7. Al occupancies at each T site in calcined Al-SSZ-70

The relative populations of the different ²⁷Al species in calcined Al-SSZ-70 are quantified by deconvolution of the 1D single-pulse ²⁷Al spectrum in Fig. S9a. The positions of each of the 5 T sites that occupied by Al are shown in the schematic structures of calcined Al-SSZ-70 in Figs. S6b and S9b. All of the ²⁷Al signals detected are assigned to ²⁷Al species within the Al-SSZ-70 framework, with no evidence for extra-framework species. The ²⁷Al spectrum was simulated using the spectral parameters for each ²⁷Al signal given in Table S2. Based on the relative integrated intensities of the ²⁷Al signals in the quantitative 1D single-pulse ²⁷Al spectrum and the structure of calcined SSZ-70, ^[5,28] the Al/T occupancies of each T site in calcined Al-SSZ-70 are determined and reported in Table S4. Notably, T1b, T2a/b, and T3 are all located at the surfaces of the interlayer channels, while T5b is located at the surfaces of the intralayer **MWW**-type channels.

Figure S9. (a) Solid-state single-pulse 1D ²⁷AI MAS NMR spectrum of calcined AI-SSZ-70, acquired at 18.8 T, 35 kHz MAS, and 295 K. The red dotted line is a simulation of the total spectrum, based on deconvolutions of the individual signals, as shown offset below. (b) Schematic diagram of the framework structure of AI-SSZ-70 (same as Fig. 2c), with orange indicating the T sites that are occupied by AI heteroatoms as determined by the solid-state NMR analyses.

Table S4. AI/T fractional occupancies in AI-SSZ-70

T site	AI/T
T1b	0.35
T2a/b ^a	0.09
T3	0.19
T5b	0.13

^a Al2a and Al2b sites are structurally very similar and their respective ²⁷Al NMR signals are not resolved.

8. Comparison of calcined and as-made AI-SSZ-70

The analyses presented here of calcined AI-SSZ-70 are expected to provide additional structural constraints for future studies of the as-made analogue, the interlayer structure of which has been elusive and is still not known. The framework locations of the AI heteroatoms in AI-SSZ-70 are not expected to change substantially upon calcination, though their coordination might. The 1D ²⁷AI spectra of calcined and as-made AI-SSZ-70 are compared in Fig. S10. The ²⁷AI spectrum of as-made AI-SSZ-70 shows a narrow signal at 56 ppm with a shoulder at 50 ppm, likely arise respectively from AI3 and AI5b sites, which are not expected to change substantially on calcination. No ²⁷AI signal at 60 ppm from AI2a/AI2b sites is detected, suggesting that these species may arise in calcined AI-SSZ-70 as a result of the calcination process. The ²⁷AI spectrum of as-made AI-SSZ-70 additionally

shows a broad ²⁷Al signal at 5 ppm, which arises from octahedrally-coordinated ²⁷Al species. This is consistent with the presence of octahedrally-coordinated framework Al species in both calcined and as-made Al-SSZ-70. We expect a more detailed solid-state NMR analysis of as-made SSZ-70 to be the subject of a future manuscript.

Figure S10. Solid-state 1D ²⁷Al echo MAS NMR spectra of (a) calcined and (b) as-made Al-SSZ-70 acquired at 18.8 T, 295 K, and (a) 35 or (b) 20 kHz MAS.

9. Additional references

- [1] R. H. Archer, S. I. Zones, M. E. Davis, Microporous Mesoporous Mater. 2010, 130, 255–265.
- [2] A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi, *J. Synchrotron Radiat.* **2010**, *17*, 653–668.
- [3] L. Mafra, J. A. Vidal-Moya, T. Blasco, Structural Characterization of Zeolites by Advanced Solid State NMR Spectroscopic Methods, 2012.
- [4] B. Elena, G. de Paëpe, L. Emsley, Chem. Phys. Lett. 2004, 398, 532–538.
- [5] S. Smeets, Z. J. Berkson, D. Xie, S. I. Zones, W. Wan, X. Zou, M. F. Hsieh, B. F. Chmelka, L. B. McCusker, C. Baerlocher, J. Am. Chem. Soc. 2017, 139, 16803–16812.
- [6] E. Van Veenendaal, B. H. Meier, A. P. M. Kentgens, Mol. Phys. 1998, 93, 195–213.
- [7] B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson. 2000, 142, 97–101.
- [8] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, G. Hoatson, *Magn. Reson. Chem.* **2002**, *40*, 70–76.
- [9] N. Kodakari, K. Tomita, K. Iwata, N. Katada, M. Niwa, *Langmuir* **1998**, *14*, 4623–4629.

- [10] R. H. Archer, J. R. Carpenter, S.-J. Hwang, A. W. Burton, C.-Y. Chen, S. I. Zones, M. E. Davis, Chem. Mater. 2010, 22, 2563–2572.
- [11] P. Styles, N. F. Soffe, C. A. Scott, D. A. Cragg, F. Row, D. J. White, P. C. J. White, J. Magn. Reson. 1984, 60, 397–404.
- [12] S. Cadars, N. Mifsud, A. Lesage, J. D. Epping, N. Hedin, B. F. Chmelka, L. Emsley, J. Phys. Chem. C 2008, 112, 9145–9154.
- [13] Z. J. Berkson, R. J. Messinger, K. Na, Y. Seo, R. Ryoo, B. F. Chmelka, Angew. Chem. Int. Ed. 2017, 56, 5164–5169.
- [14] L. Frydman, D. M. Grant, R. K. Harris, Encycl. Nucl. Magn. Reson. Vol. 9 Adv. NMR 2002, 9, 262–274.
- [15] E. Lippmaa, A. Samoson, M. Magi, J. Am. Chem. Soc. 1986, 108, 1730–1735.
- [16] A. Samoson, E. Lippmaa, G. Engelhardt, U. Lohse, H. G. Jerschkewitz, Chem. Phys. Lett. 1987, 134, 589– 592.
- [17] J. Dědeček, Z. Sobalík, B. Wichterlová, Catal. Rev. Sci. Eng. 2012, 54, 135–223.
- [18] J. A. Van Bokhoven, D. C. Koningsberger, P. Kunkeler, H. Van Bekkum, A. P. M. Kentgens, J. Am. Chem. Soc. 2000, 122, 12842–12847.
- [19] J. B. d'Espinose de Lacaillerie, C. Fretigny, D. Massiot, J. Magn. Reson. 2008, 192, 244–251.
- [20] G. Le Caër, B. Bureau, D. Massiot, J. Phys. Condens. Matter 2010, 22, 065402.
- [21] P. Klein, V. Pashkova, H. M. Thomas, S. R. Whittleton, J. Brus, L. Kobera, J. Dedecek, S. Sklenak, J. Heyrovsky, J. Phys. Chem. C 2016, 120, 14216–14225.
- [22] C. A. Fyfe, J. L. Bretherton, L. Y. Lam, J. Am. Chem. Soc. 2001, 123, 5285-5291.
- [23] S. Ramdas, J. Klinowski, Nature 1984, 308, 521–523.
- [24] G. Engelhardt, S. Luger, J. C. Buhl, J. Felsche, Zeolites 1989, 9, 182–186.
- [25] Y. Liu, H. Nekvasil, J. Tossell, J. Phys. Chem. A 2005, 109, 3060-3066.
- [26] D. M. Dawson, R. F. Moran, S. E. Ashbrook, J. Phys. Chem. C 2017, 121, 15198–15210.
- [27] M. A. Camblor, A. Corma, M.-J. Díaz-Cabañas, C. Baerlocher, J. Phys. Chem. B 1998, 102, 44–51.
- [28] C. Baerlocher, L. B. McCusker, "Database of Zeolite Structures," can be found at http://www.izastructure.org/databases/, which is regularly updated.